If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+12x=53
We move all terms to the left:
3x^2+12x-(53)=0
a = 3; b = 12; c = -53;
Δ = b2-4ac
Δ = 122-4·3·(-53)
Δ = 780
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{780}=\sqrt{4*195}=\sqrt{4}*\sqrt{195}=2\sqrt{195}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-2\sqrt{195}}{2*3}=\frac{-12-2\sqrt{195}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+2\sqrt{195}}{2*3}=\frac{-12+2\sqrt{195}}{6} $
| 6x+24=3x-36 | | 3x-45=123 | | 2x=6x+1÷7+3x-5÷2 | | 3x-45=123 | | 2x=6x+1÷7+3x-5÷2 | | 2x=6x+1÷7+3x-5÷2 | | 2x=6x+1÷7+3x-5÷2 | | 2x=6x+1÷7+3x-5÷2 | | 9.8t=49 | | 3x-45=123 | | 3x-45=123 | | 3x-45=123 | | 2x=6x+1÷7+3x-5÷2 | | 3x-45=123 | | 3x-45=123 | | 3x-45=123 | | n3+2=15 | | n|3+2=15 | | 5(5-z)=4(z-55 | | n~3+2=15 | | n#3+2=15 | | Y=-1.75x^2+19.25x | | 1.25b=8.75 | | Y=-1.75x^2+19.25x | | 1.25b=8.75 | | n*3+2=15 | | 8(2.3+xx=7 | | n/3+2=15 | | -19=x+75 | | -5x-7(8x-3)=-21 | | -5x-7(8x-3)=-21 | | -5x-7(8x-3)=-21 |